Третья часть требований содержит ограничения по времени для работы как всей программы в целом, так и ее блоков. При вынужденном прерывании работы блока по ограничению времени исследователь должен сделать вывод о неблагополучии в постановке задачи по данному блоку и необходимости согласования алгоритма с ресурсами времени Построение математической модели исследуемой системы. Завершается окончательная формализация функционирования исследуемой системы в виде последовательности преобразований характеристик состояний системы в зависимости от модельного времени. Может включать в себя любые преобразования дискретных систем, которые могут быть осуществлены на ЭВМ. . Разработка программы моделирования.
Написание программы начинается с ее математического содержания. Прежде всего, это преобразование математических описаний элементов и учитываемых внешних воздействий к виду, который позволит реализовать пошаговое осуществление процесса функционирования на конкретной ЭВМ. Учитывая заданное начальное значение характеристик состояния системы, определяют алгоритм образования следующих друг за другом дискретных моментов модельного времени Верификация и адаптация имитационной модели.
Заключительные этапы работы по построению модели не менее важны по степени ответственности. Чаще всего их именуют просто оценкой адаптации разработанной системы, часто забывая, что здесь имеют место две различных по существу проблемы.
Первая - насколько близка созданная модель реально существующему явлению, вторая - насколько пригодна данная модель для исследования новых, еще не опробованных значений аргументов и параметров системы.
Решение первой задачи, называемой многими авторами верификацией, чаще всего решается ретроспективным методом или методом контрольных точек. Обычно системе задаются такие значения параметров и начальных значений, в которые она должна прийти через определенное количество шагов модельного времени к состоянию, известному тем или иным образом исследователю.
Комплекс адаптивно-имитационных моделей дает возможность более точно учитывать стохастические и нелинейные зависимости технологических процессов и получать научно обоснованные и надежные в реализации управленческие решения. Но, вместе с тем, нельзя не сказать о недостатках метода:
сложности при описании и построении нелинейных технологических зависимостей, требующих привлечения к экономическому исследованию специалистов смежных наук, переработки значительно большего количества информации и специальных методов исследования, не применявшихся ранее экономической наукой;
необходимость итеративного подхода при отыскании оптимума методами многомерного планирования эксперимента, существенно увеличивающего время поиска оптимального решения;
некоторое снижение точности результатов расчета за счет требований диалога с ЭВМ, вынуждающих применять в комплексе упрощенные алгоритмы моделей;
Из анализа этих недостатков видно, что в своей основе они имеют гносеологический характер и для получения качественно новых результатов исследователь должен преодолеть трудности такого характера. По поводу третьего недостатка, носящего технические черты, нужно заметить, что в процессе развития информационной техники увеличивается быстродействие ЭВМ и в качестве элементов-моделей можно будет включать все более сложные функциональные зависимости, которые повысят общую точность вычислений.
Задачей функционирования имитационного подкомплекса является расчет показателей экономической эффективности и надежности плана управления производством при заданных значениях изменяемых параметров. Заранее неизвестными являются лишь погодные условия, которые генерируются в соответствии с функциями распределения погодно-климатических факторов в одной из моделей имитационного подкомплекса.
Перейти на страницу: 1 2 3
|