Поскольку статистические явления органически связаны между собой, зависят друг от друга и обуславливают друг друга, то необходимы специальные статистические методы анализа, позволяющие изучать форму, тесноту и другие параметры статистических взаимосвязей. Одним из таких методов является корреляционный анализ. В отличие от функциональных зависимостей, при которых изменение какого-либо признака - функции полностью и однозначно определяется изменением другого признака-аргумента, при корреляционных формах связи изменению результирующего признака соответствует изменение среднего значения одного или нескольких факторов. При этом рассматриваемые факторы определяют результирующий признак полностью.
Если исследуется связь между одним фактором и одним признаком, связь называется однофакторной и корреляция является парной, если же исследуется связь между несколькими факторами и одним признаком, связь называется многофакторной и корреляция является множественной.
Силу и направление однофакторной связи между показателями характеризует линейный коэффициент корреляции r, который исчисляется по формуле:
r= (1.28)
Значение этого коэффициента изменяется от - 1 до +1. Отрицательное значение коэффициента корреляции свидетельствует о том, что связь обратная, положительная - связь прямая. Связь является тем более тесной и близкой к функциональной, чем ближе значение коэффициента к 1. По формуле линейного коэффициента (1.29) рассчитывают также парные коэффициенты корреляции, которые характеризуют тесноту связи между парами рассматриваемых переменных (без учета их взаимодействия с другими переменными). Показателем тесноты связи между результативным и факторным признаками является коэффициент множественной корреляции R. В случае линейной двухфакторной связи он может быть рассчитан по формуле:
= (1.29)
где r - линейные (парные) коэффициенты корреляции.
Значение этого коэффициента может изменяться от 0 до 1.
Коэффициент R2 называется коэффициентом множественной детерминации и показывает, какая доля вариации изучаемого показателя обуславливается линейным влиянием учтенных факторов. Значения коэффициента находятся в пределах от 0 до 1. Чем ближе R2 к 1, тем большим является влияние отобранных факторов на результирующий признак.
Завершающим этапом корреляционно-регрессионного анализа является построение уравнения множественной регрессии и нахождение неизвестных параметров а0, а1, …, аn выбранной функции. Уравнение двухфакторной линейной регрессии имеет вид:
x= а0+a1x1+a2x2 (1.30)
где yx - расчетные значения результирующего признака;1 и x2 - факторные признаки;
а0, а1, а2 - параметры уравнения.
Для нахождения параметров уравнения а0, а1, а2 строится система нормальных уравнений:
na0 + a1 + a2 = 0+ a1+ a2= x1 (1.31)0+ a1+ a1= x2
|