Проверка исходного ряда на стационарность

МА(2)

Таблица 7. Модель МА(2)

В соответствии с данной моделью процесс описывается уравнением:

S.D. = 2,258957 > 0,909794 = S.E, то есть модель снижает дисперсию процесса.

Таблица 8. Автокорреляция остатков модели МА(2)

Коэффициенты автокорреляции и частной автокорреляции ошибки модели (таблица 8), за исключением десятого, находятся в пределах доверительной трубки.

Все значения Q-Stat (таблица 8), вплоть до девятого включительно, меньше критических значений. В частности, девятое значение Q-Stat равно 16,094, что меньше критического значения, равного 16,919. Поэтому нельзя отклонить гипотезу о равенстве нулю первых девяти коэффициентов автокорреляции ошибки.

Десятое значение Q-Stat равно 26,59, что превышает критическое значение (18,307). Отсюда следует вывод о неравенстве нулю хотя бы одного из первых десяти коэффициентов автокорреляции ошибки.

Поскольку первые девять коэффициентов автокорреляции ошибки модели статистически равны нулю, можно считать, что выход за пределы доверительной трубки значения десятого коэффициента автокорреляции ошибки вызван наведённой корреляцией.

Исходя из вида автокорреляционной и частной корреляционной функций ошибки модели, а также значений Q-Stat, можно сделать вывод об отсутствии автокорреляции ошибки модели.

Среднее значение ошибки модели равно -0,026812, что близко к нулю. Среднеквадратическое отклонение ошибки равно 0,9081.

Таким образом, ошибка модели представляет собой «белый шум».

Таблица 9. Автокорреляция квадратов остатков модели МА(2)

Значения не всех коэффициентов автокорреляции квадратов ошибки (таблица 9) находятся в пределах доверительной трубки: в частности, первое, третье, четвёртое, девятое и десятое значения коэффициентов автокорреляции квадратов ошибки выходят за пределы доверительной трубки. Первое значение Q-Stat (9,0138) уже превышает критическое (3,84146). Следовательно, нельзя принять гипотезу о равенстве нулю первого коэффициента автокорреляции квадратов ошибки модели. Итак, квадраты остатков модели коррелированны.

Нельзя утверждать, что именно МА(2) лучшим образом описывает процесс. Поэтому для сравнения далее будут рассмотрены близкие к МА(2) модели, содержащие один дополнительный регрессор: МА(3) и ARMA(1, 2).

МА(3)

Таблица 10. Модель МА(3)

Процесс в соответствии с данной моделью описывается уравнением:

S.D.= 2,25896 > 0,90919 = S.D., то есть модель снизила дисперсию процесса.

Таблица 11. Автокорреляция остатков модели МА(3)

Все значения коэффициентов автокорреляции и частной корреляции ошибки модели, за исключением десятого, находятся в пределах доверительной трубки. Все значения Q-Stat вплоть до девятого включительно меньше критических значений.

Девятое значение Q-Stat составляет 16,622, что меньше критического значения, равного 16,919. Поэтому нельзя отклонить гипотезу о равенстве нулю первых девяти коэффициентов автокорреляции ошибки. Десятое значение Q-Stat равно 25,49, что превышает критическое значение (18,307). Отсюда следует вывод о неравенстве нулю хотя бы одного из первых десяти коэффициентов корреляции ошибки.

Поскольку первые девять коэффициентов автокорреляции ошибки модели статистически равны нулю, можно считать, что выход значения десятого коэффициента автокорреляции ошибки за пределы доверительной трубки вызван наведённой корреляцией.

На основании значений коэффициентов автокорреляции и частной автокорреляции ошибки, а также значений Q-Stat, можно сделать вывод о некоррелированности ошибки модели.

Среднее значение ошибки равно -0,043354, что близко к нулю. Среднеквадратическое отклонение ошибки равно 0,9056.

Значит, ошибка модели представляет собой «белый шум».

Перейти на страницу: 1 2 3 4 5 6